Vollkonservierung von Denkmälern aus Naturstein
Neues Verfahren macht Volltränkung mit Kieselgel möglich

Friederike Klemm:
Herr Jbach, auf der »denkmal 2006« in Leipzig haben Sie die Volltränkung mit Kieselsäureester vorgestellt und gleichzeitig angekündigt, dass Sie an einer Verbesserung arbeiten. Worin besteht diese Weiterentwicklung?

Wolf Jbach:
Anders als das Kieselgel, das aus der Polykondensation von Orthokieselsäureethylester (TEOS) hervorgeht und bruchsollenartig im Porenraum zerfällt (Abb. 1), zieht sich das Kieselgel, welches aus dem neuen Tränkungsmittel entsteht, als weitgehend geschlossener, dünner Film über die Porenwände (Abb. 2 + 3). Er bildet damit eine Schutzhülle gegen aggressive Porenlösungen und übernimmt die Rolle eines Meniskenzements zwischen den Gesteinsteilchen. Durch die Filmbildung entsteht auch ein neues, möglicherweise schädliches Mikroporen- system, wie dies beim Bruchsollmosaik des aus TEOS hervorgegangenen Kieselgels geschieht.

Friederike Klemm:
Das sind erst einmal Behauptungen. Gibt es dafür auch Beweise?

Wolf Jbach:

Friederike Klemm:
Sie sprechen von einer geringen Reduzierung der Permeabilität und von einer Erhöhung des E-Moduls. Inwiefern sind das Indikatoren für eine Schutzwirkung und eine verbesserte Festigkeit?

Wolf Jbach:
Die geringe Reduzierung der Permeabilität ist nur ein Nachweis dafür, dass der Film tatsächlich dünn auf der Porenwandung liegt. Wie bereits oben gesagt, geht die Erhöhung des E-Moduls mit einer Zunahme der Festigkeit einher. Momente anarbeiten wir an einer Probenserien, bei der wir ein Nachweis der Festigkeitssteigerung nicht indirekt durch E-Modulmessungen, sondern direkt durch...

Friederike Klemm:
Wie sind Sie zu der neuen Tränkung gekommen?

Wolf Jbach:
Durch Hunderte von „Trial and Error“-Versuchen mit Kieselsäure und Silanen, die in Sandstein-kerne injiziert wurden oder in Petrischalen ausreaktieren, haben wir nach einem Mittel gesucht, das in den Porenraum injiziert werden kann und den gewünschten geschlossenen Film bildet. Sehr schnell wurde uns klar, dass auch Kieselsäure mit Partikelgrößen von neun Nanometern hierfür nicht infrage kommen. Darum konzentrierten sich die Versuche auf die Silane.

Friederike Klemm:
Sind die Versuche in der Petrischale eine Referenz für das Ergebnis im Porenraum?

Wolf Jbach:
Wenn Sie REM-Bilder von TEOS-Kieselgel im Porenraum mit Makrosaufnahmen von TEOS-Kieselgel in der Petrischale vergleichen, werden Sie eine frappierende Übereinstimmung erkennen: In beiden Fällen zeigt sich ein Bruchschollenmosaik. Mit gewisser Berechtigung lässt das den Umkehrschluss zu, dass ein Tränkungsmittel, das in der Petrischale einen geschlossenen Film bildet, dies auch im Porenraum tut. Im Übrigen verweise ich auf die Abbildungen 2 + 3.

Friederike Klemm:
Sie haben tatsächlich in den Petrischalen ein wesentlich anderes Erscheinungsbild bekommen?

Wolf Jbach:

Friederike Klemm:
Verwenden Sie auch Kieselsäureester in der Tränkösung? Sie sprechen etwas versteckt von einer Kieselsäuretränkung?

Wolf Jbach:
Das Reaktionsprodukt ist ein Kieselgel, das weitgehend aus SiO₂ besteht, jedoch organische Reste enthalten, die die angestrebte Elastizität und Klebewirkung herbeiführen. Als Ausgangsmaterial haben wir aber aus der großen Familie der Silane nicht das TEOS (umgangssprachlich KSE oder Kieselsäureester) genommen, sondern eine Kombination aus den so genannten funktionellen Silanen (auch Ormosile genannt).

Friederike Klemm:
Wie sind Sie auf diese Verbindungsklasse für die Konservierung von Naturstein gekommen?

Wolf Jbach:
Bereits seit 35 Jahren haben wir in unserer Tränkösung der Acrylharzvolltränkung funktionelle Silane als Haftvermittler eingesetzt. Als wir uns jetzt dem anorganischen Konservierungsmittel zugewandt haben, war es deshalb nahe liegend, dass wir die Kenntnisse aus der Vergangenheit in unsere Überlegungen einbezogen haben.

Friederike Klemm:
Wie lange haben Sie denn an dieser Entwicklung gearbeitet?

Wolf Jbach:
Wenn wir die ersten Überlegungen in Richtung Tränkung mit anorganischen Materialien einbeziehen, haben wir seit 20 Jahren daran gearbeitet. Konkret haben wir die Thematik nochmals vor zehn Jahren aufgegriffen und dann systematisch vor eineinhalb Jahren. Sie kommen alle an der großen Anzahl der Versuche erkennen, dass es sich um eine außerordentlich umfangreiche Laborarbeit handelt.

Friederike Klemm:
Wie wollen Sie das neue Tränkungsmittel einsetzen?

Wolf Jbach:
In erster Linie werden wir auch weiterhin die Volltränkung als eine bis in den Kern reichende Festigung durchführen, weil nur dann gewährleistet ist, dass ein gleichmäßiges Festigkeitsprofil über den gesamten Querschnitt erreicht wird. Partiell wird man allerdings dieses Produkt auch vor Ort einsetzen können, dann allerdings mit allen Einschränkungen einer Vorort-Tränkung. Wir arbeiten jedoch daran, vor Ort eine Tiefentränkung zu erzielen, die wesentlich weitergehende Eindring-
tiefen garantiert als die bisher übliche normale Anwendung.

Friederike Klemm:
Stellt die Volltränkung mit dem neuen Produkt einen Wettbewerb für die Acrylharzvolltränkung dar?

Wolf Jbach:
Das sehe ich nicht, es ist aber eine wesentliche Ergänzung. Die Acrylharzvolltränkung wird für sehr schwer geschädigte Objekte, für Kalkstein und insbesondere für Marmor auch weiterhin ihre Bedeutung haben. Darüber hinaus ist die AVT wesentlich besser geeignet, statisch belastete Teile zu ertüchtigen. Der Denkmalschutz hat die Acrylharzvolltränkung immer als eine Möglichkeit zur Erhaltung schwer geschädigter Objekte, d.h. für Objekte, für die das Verfahren die Ultima Ratio darstellt, gesehen. Die KVT erweitert für uns den Kreis der für eine Konservierung infrage kommenden Objekte.

Friederike Klemm:
Ist das Verfahren bereits einsetzbar?

Wolf Jbach:

Friederike Klemm:
Gratulation, an Sie oder an ein Team?

Wolf Jbach:
Sowohl das Wissen über die AVT meines langjährigen Mitarbeiters Wulf Hädrich als auch die petrophysikalischen und chemischen Kenntnisse von Dr. Robert Sobott stecken in dieser Entwicklung. Sehr geholfen hat uns die Nähe zur Uni Erlangen und hier insbesondere zu Prof. Dr. Peter Wasserscheid, Lehrstuhl Chemische Reaktions-

Technik.